On Blowup Solutions to the Focusing Intercritical Nonlinear Fourth-Order Schrödinger Equation

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Blowup for the L2-Critical Focusing Nonlinear Schrödinger Equation in Higher Dimensions below the Energy Class

We generalize recent work by J. Colliander, S. Raynor, C. Sulem, and J. D. Wright, [14], and T. Hmidi and S. Keraani, [21], on the blowup of the two-dimensional L-critical focusing NLS below the energy space, to all dimensions d ≥ 3. More precisely, we show that blowup solutions from initial data in H(R), s > s0(d) and d ≥ 3, concentrate at least the mass of the groundstate at the blowup time.

متن کامل

Periodic solutions of fourth-order delay differential equation

In this paper the periodic solutions of fourth order delay differential equation of the form $ddddot{x}(t)+adddot{x}(t)+f(ddot{x}(t-tau(t)))+g(dot{x}(t-tau(t)))+h({x}(t-tau(t)))=p(t)$  is investigated. Some new positive periodic criteria are given.  

متن کامل

Direct search for exact solutions to the nonlinear Schrödinger equation

A five-dimensional symmetry algebra consisting of Lie point symmetries is firstly computed for the nonlinear Schrödinger equation, which, together with a reflection invariance, generates two five-parameter solution groups. Three ansätze of transformations are secondly analyzed and used to construct exact solutions to the nonlinear Schrödinger equation. Various examples of exact solutions with c...

متن کامل

Self-Focusing in the Damped Nonlinear Schrödinger Equation

We analyze the effect of damping (absorption) on critical self-focusing. We identify a threshold value δth for the damping parameter δ such that when δ > δth damping arrests blowup. When δ < δth, the solution blows up at the same asymptotic rate as the undamped nonlinear Schrödinger equation.

متن کامل

Model order reduction for nonlinear Schrödinger equation

We apply the proper orthogonal decomposition (POD) to the nonlinear Schrödinger (NLS) equation to derive a reduced order model. The NLS equation is discretized in space by finite differences and is solved in time by structure preserving symplectic midpoint rule. A priori error estimates are derived for the POD reduced dynamical system. Numerical results for one and two dimensional NLS equations...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Dynamics and Differential Equations

سال: 2018

ISSN: 1040-7294,1572-9222

DOI: 10.1007/s10884-018-9690-y